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Abstract Modern service robots will soon become an es-

sential part of modern society. As they have to move and

act in human environments, it is essential for them to be

provided with a fast and reliable tracking system that lo-

calizes people in the neighbourhood. It is therefore impor-

tant to select the most appropriate filter to estimate the posi-

tion of these persons. This paper presents three efficient im-

plementations of multisensor-human tracking based on dif-

ferent Bayesian estimators: Extended Kalman Filter (EKF),

Unscented Kalman Filter (UKF) and Sampling Importance

Resampling (SIR) particle filter. The system implemented

on a mobile robot is explained, introducing the methods used

to detect and estimate the position of multiple people. Then,

the solutions based on the three filters are discussed in de-

tail. Several real experiments are conducted to evaluate their

performance, which is compared in terms of accuracy, ro-

bustness and execution time of the estimation. The results

show that a solution based on the UKF can perform as good

as particle filters and can be often a better choice when com-

putational efficiency is a key issue.

Keywords People Tracking · Mobile Robot · Kalman

Filter · Particle Filter · Multisensor Fusion

1 Introduction

In the last decade, several mobile robots have been employed

in exhibitions and public places to entertain visitors, inter-
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acting with them and providing useful information. The tour-

guide robot in (Burgard et al. 2002), for example, has been

working in a museum to accompany visitors and provide

them with information about the different exhibits. The robot

was equipped with a laser-based tracking to create maps of

the environments discarding human occlusions, and to adapt

its velocity to the visitors’ motion. Another case was the in-

teractive mobile robot described in (Bellotto and Hu 2005),

which integrated laser and visual data to detect human legs

and faces, moving towards visitors to interact with them by

use of synthesized speech and a touch-screen interface.

Another field of application for people tracking is au-

tomatic or remote surveillance with mobile security robots,

which can be used to monitor wide areas of interest oth-

erwise difficult to cover with fixed sensors. These robots

should be able to detect and track people in restricted zones,

signaling, for examples, the presence of intruders to the se-

curity personnel. Such a task was accomplished by an internet-

based mobile robot in (Liu et al. 2005), which used a PTZ

camera to detect and recognize human faces. The security

robot in (Treptow et al. 2005), instead, combined thermal

vision, to detect and track people, with a normal camera, to

track and recognize faces. Human tracking is also very im-

portant in the new research area of socially assistive robotics

(Tapus et al. 2007) to maintain an appropriate spatial dis-

tance between people and robots, when these are engaged in

social interactions.

To achieve full autonomy in mobile robotics, no exter-

nal sensors or computers should be used, otherwise the sys-

tem performance is completely dependent on the working

environment. With these constraints, people tracking is par-

ticularly challenging and becomes even more difficult if the

hardware resources are limited. Therefore, the computational

efficiency of the tracking system has also to be carefully

considered during software design.
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The main contribution of this paper is an experimen-

tal comparison of different Bayesian estimators, which is

important to select the most appropriate solution for track-

ing people with a fully autonomous mobile robot. Although

some previous work already analyzed the performance of

Kalman and particle filters (Merwe et al. 2000), results have

been obtained only in simulation with synthetic models, or

from batch estimations on limited set of data. These situa-

tions are significantly different from the case here consid-

ered, which deals instead with the difficult problem of real-

time target tracking under computational constraints. The

performance evaluation of these Bayesian estimators, con-

sidering also hardware and software limitations, is of funda-

mental importance for practical applications of modern ser-

vice robots.

Three classic approaches are examined: Extended Kal-

man Filter (EKF), Unscented Kalman Filter (UKF) and Sam-

pling Importance Resampling (SIR) particle filter. While the

first one is a well known technique developed long time ago

(Kalman 1960), the last two solutions have been proposed

more recently and extensively used only in the last decade

(Julier and Uhlmann 1997; Gordon et al. 1993). The choice

of these particular filters is due to the fact that all of them

have been already applied, somehow, to people tracking with

mobile robots. In this context, the performance of each in-

dividual technique has been already described, but not yet

compared, in previous robotics literature.

The EKF has been implemented for tracking humans

with mobile robots in the works of (Beymer and Konolige

2001) and (Bobruk and Austin 2004), using visual or laser

data respectively. Both the devices have been used in (Bel-

lotto and Hu 2009) applying sensor fusion techniques and

UKF estimation to perform people tracking in typical office

environments. Several other approaches have been proposed

using particle filters with laser data and/or vision (Schulz

et al. 2003a; Chakravarty and Jarvis 2006).

To evaluate and compare the effectiveness of each tech-

nique, a common framework has to be set up, on which

quantitative and qualitative experiments can be conducted.

Therefore, in the following sections, a general probabilis-

tic approach for tracking people with a mobile robot is in-

troduced. This solution integrates legs and face detections,

obtained from robot’s laser and camera respectively, which

are fused using a sequential Bayesian filter. Since the com-

parison focuses on multi-target (people) tracking, the same

data association algorithm is applied to all the filtering tech-

niques under consideration.

The choice of the best estimator to use for human track-

ing depends on several factors, among which the following

important ones: linearity/non-linearity of the system, prob-

ability distribution of the uncertainty and, last but not least,

computational efficiency. Whose familiar with the subject

already know that Kalman filters are the most computational

efficient, while particle filters are the most accurate. The

challenge however lies on the design of meaningful exper-

iments so that known facts can be proved on the base of

solid quantitative data. In this paper, accuracy, robustness

and execution time of the three Bayesian filters are analyzed,

showing that a solution based on the UKF not only performs

better than the EKF, but can also be a valid alternative to

particle filters when used for tracking people with a mobile

platform.

The remainder of the paper is organized as follows. Sec-

tion 2 introduces the system designed to track people with a

mobile robot. Sections 3, 4 and 5 describe respectively the

implementation of the EKF, UKF and SIR particle filters.

Several experiments are illustrated in Section 6 to compare

the performance of the different solutions in real scenarios.

Finally, conclusions and future work are discussed in Sec-

tion 7.

2 People Tracking with a Mobile Robot

In general, tracking is a problem of estimating the position

of a target from noisy sensor measurements. In the pres-

ence of multiple targets, which is the case for people track-

ing, each measurement has also to be assigned to the proper

track. This section introduces the solutions adopted for hu-

man detection, tracking and data association with a mobile

robot. The system used was a Pioneer platform, shown in

Fig. 1, equipped with a SICK laser and a PTZ camera, which

provided data respectively at 5Hz and 10fps. The on-board

PC of the robot was a Pentium III 850MHz with 128MB of

RAM, running Linux OS.

2.1 Human Detection

Two kind of sensors, cameras and laser range finders, are

the most commonly used for tracking people with a mobile

platform (Beymer and Konolige 2001; Schulz et al. 2003a;

Chakravarty and Jarvis 2006). The robot employed in the

current research makes use of both the sensors to recognize

human legs and faces. The detection algorithms, and the ad-

vantage of combining laser and visual information, are de-

scribed in detail in (Bellotto and Hu 2009).

The legs detection algorithm is able to recognize differ-

ent legs postures on a 180◦ laser horizontal scan, with a res-

olution of 0.5◦, returning their direction and distance. The

algorithm starts with a smoothing process of the laser read-

ings, and then detects all the radial edges on the directions

of the laser beam. Groups of adjacent edges, possibly gen-

erated by human legs, are extracted using simple geomet-

ric relations and spatial constraints. The mid-points of these

groups, corresponding to the 2D location of the legs, are fi-

nally computed.
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Fig. 1 Robot with laser and camera used for legs and face detection.

Since legs are detected in real-time from a single laser

scan, the algorithm does not need to compensate for the dy-

namics of the robot, as other motion-based techniques do.

The method is also quite robust to cluttered environments

and showed to perform well compared to other laser-based

detection techniques (Bellotto and Hu 2009). An example of

detection is illustrated in Fig. 1, which shows a typical laser

scan from the robot with two lines pointing to the human

legs mid-points.

When in proximity of a person, vision improves human

tracking thanks to face detection. This is based on a popular

algorithm (Viola and Jones 2001) available on the OpenCV

library (Bradski et al. 2005). The solution works in real-

time on a single camera’s frame, 320 × 240, and is color-

independent, which makes it more robust to lighting varia-

tions.

The method is based on a cascade of (weak) classifiers

using particular visual features. Each classifier is trained to

detect faces, from sub-regions of the image, with a high hit

rate. A sub-region can be rejected by the current classifier or

passed to the following one. For a certain number of trained

classifiers, the final false alarm will be therefore very low,

yet keeping a total hit rate close to 100%. Using a pin-hole

camera model, the direction of the face is finally calculated

and used for human tracking, as discussed in Section 2.4.

2.2 Bayesian Estimation

The most popular methods for dynamic state estimation be-

long to the family of recursive Bayesian estimators, which

include Kalman filters (Welch and Bishop 2004; Julier and

Uhlmann 1997) and sequential Monte Carlo estimators (Aru-

lampalam et al. 2002), also known as particle filters. These

estimate the target position recursively, combining the ex-

pected state information with the current observations from

the sensors.

In the discrete-time domain, for a general tracking appli-

cation, the evolution of the target state can be described by

the following general model:

xk = f(xk−1,wk−1) (1)

where xk is the state vector at the current time step k and

wk−1 is white noise. The relative observations are generally

described by another model with additive noise:

zk = h(xk) + vk (2)

where zk is the observation vector and vk is white noise,

mutually independent from wk−1. The functions f and h

can be non-linear.

If Zk = {z1, . . . , zk} is the set of observations up to

time k, the prior probability density p(xk|Zk−1) can be ex-

pressed as follows:

p(xk|Zk−1) =

∫

p(xk|xk−1,Zk−1) p(xk−1|Zk−1) dxk−1

=

∫

p(xk|xk−1) p(xk−1|Zk−1) dxk−1 (3)

where the transitional p(xk|xk−1,Zk−1) = p(xk|xk−1) is

determined by the Markovian prediction model in (1). Then,

applying Bayes’ rule, the posterior density is given by the

following equation:

p(xk|Zk) = p(xk|zk,Zk−1)

=
p(zk|xk,Zk−1) p(xk|Zk−1)

p(zk|Zk−1)

=
p(zk|xk) p(xk|Zk−1)

p(zk|Zk−1)
(4)

Note that, in the numerator term, p(zk|xk,Zk−1) = p(zk|xk)

because zk is completely described by the observation model

in (2), which depends only on the current state xk and the

noise vk. The denominator is just a normalization factor cal-

culated as follows:

p(zk|Zk−1) =

∫

p(zk|xk) p(xk|Zk−1) dxk (5)

Equations (3) and (4) are called, respectively, prediction

and update, or correction, of the recursive Bayesian estima-

tion. The desired estimate is usually obtained, at the end

of every predict-update iteration, by the minimum mean-

square error value, i.e. the conditional mean x̂k , E[xk|Zk].
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2.3 Prediction

A common solution to approximate human motion, while

walking at a normal speed, is the constant velocity model.

The version here considered is an extension of the latter, al-

ready introduced in (Bellotto and Hu 2006), which includes

a state vector formed by the position (xk, yk) and the height

zk of the human subject, plus the relative orientation φk and

velocity vk. The equations of the model are the following:


































xk = xk−1 + vk−1δk cos φk−1

yk = yk−1 + vk−1δk sin φk−1

zk = zk−1 + nz
k−1

φk = φk−1 + nφ
k−1

vk = |vk−1| + nv
k−1

(6)

where δk = tk − tk−1 is the time interval, while nz
k−1

, nφ
k−1

and nv
k−1

are noises. These latter are assumed to be zero-

mean Gaussians with σz = 0.01m, σφ = π
6

rad and σv =

0.1m/s respectively. The motion model in (6) is used for the

prediction step of the Bayesian filter, as illustrated in Fig. 3

2.4 Sequential Update

The observation models described next take into account the

2D location and orientation of the robot given by the odom-

etry. Its cumulative error is not an issue in the current appli-

cation, since the objective of the system is to track humans

relatively to the current robot’s position. The odometry er-

ror between two consecutive estimations is also very small,

and can be safely included in the noise of the observation

models.

Given the location (xR

k, yR

k) and heading φR

k of the robot,

the absolute position (xL

k, yL

k) and orientation φL

k of the laser

are calculated as follows:

xL

k = xR

k + Lx cos φR

k

yL

k = yR

k + Lx sin φR

k

φL

k = φR

k

(7)

where the constant Lx is the horizontal distance of the laser

from the robot’s centre (Ly is zero). Using the quantities in

(7), the observation model for the bearing bk and the dis-

tance rk of the detected legs can be written as follows:










bk = tan−1

(

yk − yL

k

xk − xL

k

)

− φL

k + nb
k

rk =
√

(xk − xL

k)
2

+ (yk − yL

k)
2

+ nr
k

(8)

where the noises nb
k and nr

k are zero-mean Gaussians with

standard deviations σb = π
60

rad and σr = 0.1m.

Similarly, the absolute position (xC

k, yC

k, zC

k) and orienta-

tion (φC

k, θC

k) of the camera take into account the horizontal

distance Cx from the robot’s centre (Cy is zero), the height

γ
β

α

h

3

h

Fig. 2 Face observation angles, including chin, measured from the

camera.

Cz , the pan Cφ and the tilt Cθ. Combining the odometry

information, these can be calculated as follows:

xC

k=xR

k + Cx cos φR

k

yC

k=yR

k + Cx sin φR

k

zC

k=Cz

φC

k=φR

k + Cφ

θC

k=Cθ

(9)

The next observation model is relative to the bearing αk and

the elevation βk of the face’s centre, plus the elevation γk of

its chin. The latter is relative to the size of the face and is

useful to discriminate false positives or facilitate data asso-

ciation in case of multiple faces. The equations of the model

are the following:


















































αk = tan−1

(

yk − yC

k

xk − xC

k

)

− φC

k + nα
k

βk = − tan−1





zk−zC

k
√

(xk−xC

k)
2
+(yk−yC

k)
2



−θC+nβ
k

γk = − tan−1





µ zk−zC

k
√

(xk−xC

k)
2
+(yk−yC

k)
2



−θC+nγ
k

(10)

The noises nα
k , nβ

k and nγ
k are zero-mean Gaussians with

σα = σβ = π
45

rad and σγ = π
30

rad. Note that, in the third

member of (10), the constant µ is chosen so that the product

µ zk corresponds to the height of the lower face’s bound, i.e.

approximately the chin. For the latter, the “canon of propor-

tion” of the human figure, as described in (Vitruvius 1914),

has been adopted. This considers the average height of a per-

son being 8 times his head, and the distance from the chin to

the nose is 1/3 of the head’s length h, as illustrated in Fig.

2. Since the face detection is centred on the nose, a value

µ ≃ 0.955 can be easily derived.

The independent measurements provided by legs and face

detection are finally used for a sequential update of the es-

timation (Bar-Shalom and Li 1995). As shown by the di-

agram in Fig. 3, which illustrates a single iteration of the

filter, legs measurements are the first to be considered, since

more accurate, and then faces. If any of the two observations

is missing, the estimate is updated only by one sensor.
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Fig. 3 Sensor data fusion with sequential estimation.

2.5 Data Association

In the current system, a gating procedure is first applied

using a validation region for each predicted observation ẑi

(Bar-Shalom and Li 1995), relative to the ith target, so that

a real measurement zj is accepted only if it satisfies the fol-

lowing condition:

(ẑi − zj)
T

S−1

ij (ẑi − zj) < λ2 (11)

where Sij is the covariance matrix of the difference ẑi − zj .

The constant λ is chosen from tables of the chi-square dis-

tribution for a probability PG of the correct measurements

to fall within the validation region. This value depends on

the size of the observation vector and is set to 3.03 for legs

detections and 3.37 for faces.

Instead of solutions like JPDA and MHT, powerful but

computationally expensive, an efficient algorithm based on

nearest-neighbour data association is adopted (Bar-Shalom

and Li 1995). This showed to be a good compromise be-

tween performances and computational cost in case the set

of subjects to track is not too dense (Montemerlo et al. 2002;

Bellotto and Hu 2006), in particular for autonomous robots

with limited processing power. At every time step, two as-

sociation matrices are created, one for the laser and another

for the camera information. The elements of these matrices

contain the following similarity measure (Uhlmann 2001):

dij =
1

√

(2π)
n |Sij |

exp

[

−
1

2
(ẑi − zj)

T S−1

ij (ẑi − zj)

]

(12)

where n is the size of the observation vector, i.e. 2 for legs

detection and 3 for faces.

2.6 Creating and Removing Tracks

New tracks are created from the sensor readings discarded

during the validation gate procedure or the data association.

Initially, a candidate track is generated by a sequence of

measurements falling inside a certain region, calculated ac-

cording to the maximum distance a person can cover at the

maximum speed of 1.5m/s. The candidate is promoted to

human track if there are at least 3 readings falling within

this region, each one of which must be received not later

than 0.5s from the previous one, otherwise the candidate is

removed. Tracks are eventually deleted from the database if

not updated for more than 2s or if the uncertainty of their 2D

position is too big, i.e. the sum of the variances in x and y is

greater than 2m2.

Note that the procedure for tracks creation is indepen-

dent from the particular Bayesian estimator used, therefore

its parameters, equally set for EKF, UKF or SIR filter, do

not influence the experimental comparison. The deletion cri-

teria, instead, is based on time but also on the estimated

covariance of the track, which might therefore be different

depending on the filter used. In practice however, the un-

certainty’s threshold works only as a precaution, and tracks

are usually removed because they exceed the time condition,

which is the same for all the estimators.

3 EKF Implementation

The Kalman filter was initially proposed in (Kalman 1960)

and, although originally not formulated as such, it has been

later shown to belong to the more general class of Bayes-

ian estimators (Barker et al. 1994). It was also proved to be

optimal in case of linear systems with Gaussian noises, for

which the posterior in (4) becomes the following:

p(xk|Zk) = N (xk; x̂k,Pk)

= |2πPk|
−1/2

exp

[

−
1

2
(xk−x̂k)

T
P−1

k (xk−x̂k)

]

(13)

where x̂k and Pk are, respectively, the estimated mean and

covariance of xk.

In case of non-linearities, the EKF provides an approx-

imated solution, applying the same equations to linearized

system models. This can give good results if the lineariza-

tion is sufficiently accurate to describe the system, but fails

badly if it is not.

Given the state vector xk = [xk, yk, zk, φk, vk]T and

the relative noise wk = [0, 0, nz
k, nφ

k , nv
k]T , the components
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of which have already been defined in Section 2.3, the lin-

earized version of the prediction model in (6) has the form:

xk = Fkxk−1 + wk−1 (14)

The Jacobian Fk is calculated as follows:

Fk =













1 0 0 −vk−1∆tk sin φk−1 ∆tk cos φk−1

0 1 0 vk−1∆tk cos φk−1 ∆tk sin φk−1

0 0 1 0 0
0 0 0 1 0

0 0 0 0 sgn (vk−1)













(15)

where ∆tk = tk − tk−1 is the time interval and sgn(vk−1)

is the algebraic sign of vk−1.

The prediction stage consists in calculating the a-priori

estimate x̂−

k and the covariance matrix P−

k of its error:

x̂−

k = f(x̂k−1, 0) (16)

P−

k = FkPk−1F
T
k + Q (17)

where Q is the covariance of the (additive) process noise:

Q =













0 0 0 0 0

0 0 0 0 0

0 0 σ2
z 0 0

0 0 0 σ2
φ 0

0 0 0 0 σ2
v













=













0 0 0 0 0
0 0 0 0 0

0 0 10−4 0 0

0 0 0 π2

81
0

0 0 0 0 10−2













(18)

The observation models described in Section 2.4 are lin-

earized as follows:

zk = Hkxk + vk (19)

where Hk is the Jacobian of the laser or camera observa-

tion, with relative noise vectors vk ≡ [nb
k, nr

k]T or vk ≡
[nα

k , nβ
k , nγ

k ]T . In the first case, given the observation vector

[bk, rk]T and the quantities defined in (8), Hk is defined as

follows:

Hk ≡ HL

k =









−
yk − yL

k

d2
k

xk − xL

k

d2
k

0 0 0

xk − xL

k

dk

yk − yL

k

dk
0 0 0









with d2
k = (xk − xL

k)
2

+ (yk − yL

k)
2

(20)

For the second one, given the vector [αk, βk, γk]T , the Jaco-

bian matrix of the model in (10) is the following:

Hk ≡ HC

k =


















−
yk − yC

k

d2
k

xk − xC

k

d2
k

0 0 0

(xk − xC

k) (zk − zC

k)

r2
k dk

(yk − yC

k) (zk − zC

k)

r2
k dk

−
dk

r2
k

0 0

(xk − xC

k) (µ zk − zC

k)

l2k dk

(yk − yC

k) (µ zk − zC

k)

l2k dk
−

dk

l2k
0 0



















(21)

with d2
k = (xk − xC

k)
2

+ (yk − yC

k)
2

r2
k = d2

k + (zk − zC

k)
2

l2k = d2
k + (µ zk − zC

k)
2

The update part includes the calculation of the following

Kalman gain Kk:

Sk = HkP
−

k HT
k + R (22)

Kk = P−

k HT
k S−1

k (23)

The quantity Sk in (22) is the innovation covariance and R

is the covariance matrix of the observation noise vk. In case

of laser readings, the latter is set as follows:

R ≡ RL =

[

σ2
b 0

0 σ2
r

]

=

[

π2

3600
0

0 10−2

]

(24)

instead for the camera the following matrix is used:

R ≡ RC =





σ2
α 0 0

0 σ2
β 0

0 0 σ2
γ



 =







π2

2025
0 0

0 π2

2025
0

0 0 π2

900






(25)

Finally, the a-posteriori estimate x̂k and the relative error

covariance Pk are computed as follows:

x̂k = x̂−

k + Kk (zk − ẑk) (26)

Pk = P−

k − KkSkK
T
k (27)

where the term (zk − ẑk), with ẑk = h(x̂−

k ), is the differ-

ence between real and predicted measurements, also called

innovation.

4 UKF Implementation

To overcome the problem of the linearization, which could

introduce large errors and require the computation of big

Jacobian matrices, the UKF makes use of another approxi-

mation, called the Unscented Transformation (UT). This is

based on the idea that it is generally easier and more accu-

rate to approximate probability distributions than non-linear

functions. The UT captures mean and covariance of a prob-

ability distribution with carefully chosen weighted points,

called sigma points. These differ from the points of particles

filters in that they are not randomly sampled and do not have

to lie in the interval [0, 1].

From the state x of size n, and its error covariance P,

the 2n + 1 sigma points XXX i and associated weights Wi of

the UT are calculated using the following equations (Julier

and Uhlmann 1997):

XXX 0 = x W0 = ρ/(n + ρ)

XXX i = x +
[

√

(n + ρ)P
]

i
Wi = [2 (n + ρ)]−1

XXX i+n = x −
[

√

(n + ρ)P
]

i
Wi+n = [2 (n + ρ)]−1

(28)
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where i = 1, . . . , n. The term
[

√

(n + ρ)P
]

i
is the ith col-

umn or row of the matrix square root of P, and ρ is a param-

eter for tuning the higher order moments of the approxima-

tion (n + ρ = 3 for Gaussian distributions).

Mean and covariance of a generic non-linear transfor-

mation y = g(x) are calculated using the sigma points as

follows:

YYYi = g (XXX i) (29)

y =
2n
∑

i=0

WiYYYi (30)

Pyy =
2n
∑

i=0

Wi [YYYi − y] [YYYi − y]
T

(31)

These equations yield to a projected mean and covariance

that are correct up to the second order, giving better results

than the EKF’s linearization, yet keeping the same compu-

tational complexity.

Given the state vector xk = [xk, yk, zk, φk, vk]T of size

n = 5, the estimation procedure of the UKF consists ini-

tially in an UT. This takes the last estimate x̂k−1 and its

relative covariance Pk−1 to generate, using (28), the 2n +

1 = 11 sigma points XXX ik−1
. Note that, in this case, the tun-

ing parameter assumes a negative value ρ = 3 − n = −2.

In (Julier et al. 2000), it is shown that ρ < 0 can lead to a

non-positive semidefinite matrix when the state covariance

is calculated with (31). In order to solve this problem, the

authors suggest to simply add a term [YYY0 − ŷ] [YYY0 − ŷ]
T

to

the sum in (31).

Using the prediction model f(xk−1) defined in (6), the

a-priori estimate x̂−

k and covariance P−

k are computed as

follows:

x̂k−1

UT
−→

{

XXX ik−1

}10

i=0
(32)

XXX−

ik
= f

(

XXX ik−1

)

for i = 0, . . . , 10 (33)

x̂−

k =

10
∑

i=0

WiXXX
−

ik
(34)

P−

k =

10
∑

i=0

Wi

[

XXX−

ik
− x̂−

k

] [

XXX−

ik
− x̂−

k

]T
+

[

XXX−

0k
− x̂−

k

] [

XXX−

0k
− x̂−

k

]T
+ Q (35)

where Q is the covariance of the process noise defined in

(18).

The expected observations for the legs and face detec-

tions are generated using the observation model h(xk), de-

fined respectively in (8) and (10), applied to the sigma points

in (33) as follows:

ZZZik
= h

(

XXX−

ik

)

for i = 0, . . . , 10 (36)

ẑk =

10
∑

i=0

WiZZZik
(37)

Sk =

10
∑

i=0

Wi [ZZZik
− ẑk] [ZZZik

− ẑk]
T

+

[ZZZ0k
− ẑk] [ZZZ0k

− ẑk]
T

+ R (38)

where ẑk is the predicted observation, Sk is the innovation

covariance and R is the covariance of the observation noise,

defined in (24) for the laser and in (25) for the camera.

The cross-correlation Ck and the gain Kk are computed

using the following formulas:

Ck =
10
∑

i=0

Wi

[

XXX−

ik
− x̂−

k

]

[ZZZik
− ẑk]

T
(39)

Kk = CkS
−1

k (40)

Finally, the a-posteriori estimate x̂k and relative covari-

ance Pk are determined applying the same equations (26)

and (27) previously used for the EKF.

5 SIR Implementation

Particle filters are recursive Bayesian estimators that make

use of Monte Carlo methods to approximate and transform

probability distributions (Doucet et al. 2001; Arulampalam

et al. 2002; Ristic et al. 2004). The major advantages of such

filters are their independence from the non-linearities of a

system and capability to approximate any kind of probability

distribution, including multimodal cases. The drawback is

that a large number of particles is normally required for a

good estimation, with a consequent negative effect on the

computational cost.

In particle filters, the posterior of the state, introduced in

(4), is approximated by the weighted sum of N samples xi
k:

p(xk|Zk) ≈
N

∑

i=1

wi
kδ(xk − xi

k) (41)

where δ(·) is the Dirac delta measure. The samples xi
k are

drawn from a known importance density q(xi
k|x

i
k−1

, zk),

and their weights are calculated recursively as follows:

wi
k ∝ wi

k−1

p(zk|x
i
k)p(xi

k|x
i
k−1

)

q(xi
k|x

i
k−1

, zk)
(42)

It can be proved that for N → ∞ the approximation in (41)

tends to the true posterior p(xk|Zk).

There are many different implementations of particle fil-

ters, however the SIR algorithm is probably the most popu-

lar, due to its simplicity. This estimator, originally proposed
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in (Gordon et al. 1993) with the name of “bootstrap” filter,

makes use of the transitional prior as importance density:

q(xi
k|x

i
k−1, zk) = p(xi

k|x
i
k−1) (43)

Like for the previous ones, the SIR estimation has an

iterative predict-update sequence. The prediction part gen-

erates new particles, from the previous ones, using (1) and

samples drawn from the probability distribution of the state

noise. In the current implementation, the number of samples

used was 1000, similar to other existing solutions (Chakrava-

rty and Jarvis 2006; Schulz et al. 2003a), and also 500, which

reduces the computational burden but is still sufficient to

track humans correctly. The prior distribution p(xk|xk−1)

is a Gaussian N [xk; f(xk−1),Q], where f(xk−1) is the pre-

diction model defined in (6) and Q is the same covariance

matrix in (18).

Then, as soon as a new measurement is available, the

update is performed calculating the new weights of the sam-

ples. The choice of the importance density in (43) simplifies

the calculus of the weights, which are given by the following

formula:

wi
k ∝ wi

k−1 p(zk|x
i
k) (44)

The likelihood p(zk|xk) is a Gaussian N [zk;h(xk),R] that

depends on the observation models h(xk) defined in (8) and

(10), for laser and camera respectively, and on the relative

noise covariance R illustrated in (24) and (25).

Weighted samples are finally used to calculate an ap-

proximated posterior with (41). At the end of each iteration,

the SIR algorithm performs also a resample step that elimi-

nates all the particles with very small weights and, from the

remaining ones, generates new samples equally weighted. A

detailed explanation of SIR and other particle filters is given

in (Arulampalam et al. 2002; Ristic et al. 2004).

6 Experimental Results

The effectiveness of the tracking system has been tested,

with several experiments in a real environment, comparing

the three solutions based on EKF, UKF and SIR filters. To

achieve maximum performances, the code has been writ-

ten in C/C++ making use of highly optimized libraries for

image processing1 and estimation2. When running in real-

time on the robot, the maximum update frequency of the

program was approximately 4Hz, but it could decrease in

case particle filters were used. The test scenario was the in-

door environment illustrated in Fig. 4, which includes sev-

eral offices, connected by a corridor to a laboratory and a

robot arena. Data have been collected tracking 7 different

1 Intel IPP – http://developer.intel.com/software/products/ipp
2 Bayes++ – http://bayesclasses.sourceforge.net

OFFICE 2

LIFT

ROBOT ARENA

OFFICE 1

LABORATORY

C
O

R
R

ID
O

R

Fig. 4 Floor plan of the environment used for the experiments.

subjects who were moving in this environment. The results

have been compared in terms of accuracy, robustness and

computational efficiency.

6.1 Tracking Accuracy

The accuracy of the estimations has been determined us-

ing the ground-truth position measured in the robot arena.

This is equipped with a marker-based tracking system us-

ing a camera mounted on the ceiling, calibrated to provide

the ground-truth position of the robot and the people around

it. A bird-eye view from the ceiling camera and the relative

observation from the robot are shown in Fig. 5.

Experimental data have been recorded during four simi-

lar trials, for a total length of approximately 5 minutes (1200

time steps). These covered various cases in which a sin-

gle person or multiple people were tracked, either with the

robot static or in motion. An example is represented in Fig.

6, which illustrates the trajectory of the robot, moving at

0.4m/s, and the random paths of three people wandering

around it. The data collected from the robot and from the

global tracking system have been used for an off-line com-

parison of the accuracy, where the tracking error was given

by the Euclidean distance between the estimated human po-

sition, (x̂k, ŷk), and the relative ground-truth, (x∗

k, y∗

k). The

latter was obtained tracking the robot with the ceiling cam-

era, together with the human targets. Then, at every time

step, their absolute position was transformed to the robot’s

frame of reference.

The results of the experiments are summarized in Ta-

ble 1, which reports the root mean square (RMS) of the 2D

position error ek, calculated over all the M tracking steps,
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(a) Bird-eye view from the ceiling camera of the robot arena. Each

target has a color marker (one more for the robot to get its orientation).

(b) Same situation as observed by the robot. Face and legs detection

are shown on the left. The robot R and the (true) position of the hu-

mans, A,B, and C, are shown on the right.

Fig. 5 Example of people tracked in the robot arena.

and the relative mean ē, the standard deviation (SD) and the

maximum value. The position error is defined as follows:

ek =
√

(x̂k − x∗

k)2 + (ŷk − y∗

k)2 (45)

The number M is the sum of the duration, in time steps, of

all the human tracks created during these experiments. The

RMS, the mean and the SD were calculated as follows:

RMS =

√

∑M
k=1

e2
k

M
(46)

ē =

∑M
k=1

ek

M
(47)

SD =

√

√

√

√

1

M − 1

M
∑

k=1

(ek − ē)2 (48)

The results in Table 1 show that the performances of the

two SIR filters were almost identical, despite the different

number of particles used. Note also that the UKF’s tracking

Fig. 6 Paths of robot (thick line) and three persons: A (thin line), B

(thin dashed line) and C (thick dashed line).

Table 1 Tracking error

EKF UKF SIR(500) SIR(1000)

RMS [m] 0.439 0.317 0.285 0.280

Mean [m] 0.325 0.261 0.248 0.244

SD [m] 0.296 0.180 0.141 0.138

Max [m] 2.084 1.680 1.291 1.267

accuracy, besides being better than the EKF, was also very

close to that one obtained with particle filters.

This is also confirmed by the graphs of the cumulative

distribution function (CDF) for the RMS and the SD of the

error, shown respectively in Fig. 7 and Fig. 8. Using the so-

lution proposed in Colegrove et al. (2003), which defines

a practical method to evaluate the performance of tracking

systems from real data, RMS and SD values are adopted

as comparison metrics. These are calculated for the whole

length Mt of each human track t created during the exper-

iments. The relative RMSt and SDt are reported in the ab-

scissa of the graphs, each one corresponding to an increment

1/Mt of the probability in the ordinate. Since the lower the

metric value the better the performance, the CDFs in Fig.

7 and Fig. 8 show that the tracking system based on UKF

is better than the EKF’s one, and is comparable to the SIR

solutions.

6.2 Tracking Robustness

When comparing different tracking solutions, another essen-

tial factor to be considered is robustness. To evaluate this,

two important parameters are considered here: the number

of tracking errors and the total amount of tracks generated

by the different systems. In addition to the previous data

recorded in the robot arena, several other experiments have



10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

RMS [m]

C
D

F

 

 

EKF

UKF

SIR 500

SIR 1000

Fig. 7 Cumulative distribution function of the root mean square error.
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Fig. 8 Cumulative distribution function of the error standard deviation.

been carried out tracking people who were moving between

the rooms in Fig. 4. Totally, more than 10 minutes of data

have been collected, and all the generated tracks have been

manually labeled.

The number of tracking errors was evaluated considering

only the 2D position for sake of simplicity. Each one of the

following situations was counted as an error: a) the track

deviates from the correct trajectory of the human target and

is eventually deleted by the system; b) the track “jumps” to

a static object, adjacent to the path of the person, due to a

false positive (gating error); c) the track switches to another

person close to the original one (data association error). All

these cases are strictly related to the estimate of the filter and

to the distribution of its uncertainty.

Although this work does not include an exhaustive eval-

uation of the tracking performance under varying sensing

conditions (false positives, occlusions, etc.), intuitively these

will be better handled by the UKF and the SIR particle filter,

rather than the EKF, due to their ability to better model the

propagated probability functions. This is shown, for exam-

ple, in Fig. 9 and Fig. 10, where a couple of EKF’s errors

occurred while the robot was following some persons be-

tween different rooms. The correct path of the UKF track

(identical to the SIR case) and the wrong one generated by

the EKF are shown on the left of the figures, together with

the robot’s trajectory. A moment of the wrong tracking with

the EKF is shown in the middle, while the correct estimation

of the UKF is illustrated on the right. In Fig. 9, the tracking

error in the office was caused by the curvilinear trajectory

of the human and the simultaneous motion of the robot, as

Fig. 11 Number of tracking errors with different filters.

shown also in Video 1. In Fig. 10 and relative Video 2, the

EKF failed between the laboratory and the arena as a conse-

quence of a false positive on the legs detection, generated by

a column. These situations were correctly handled instead

by the UKF and the SIR tracking systems.

The chart in Fig. 11, showing the total amount of track-

ing errors, illustrates clearly that the results obtained with

the UKF and the particle filters were much better than the

EKF-based tracking. The non-linearity of the system, in-

deed, made the EKF fail in several occasions, in particu-

lar when both the robot and the person being tracked were

moving. The performance of the UKF was generally simi-

lar to the SIR tracking in terms of the number of errors, but

differed on the type. Despite occasional errors due to some

false positives, the major accuracy of particle filters in rep-

resenting the probability distribution of the estimate seemed

to be an advantage for data association. However, as will

be shown in Section 6.3, a solution based on particle filters

was not feasible for real-time tracking with the current robot

platform.

The previous results were also confirmed by the total

number of tracks generated for each system implementation,

as reported in Fig. 12. Indeed, the more robust and stable is

the estimation, the less likely is the tracking to fail, and con-

sequently the smaller is the number of tracks generated by

the system. Although the whole tracking length was about

the same for all the solutions (approximately 2750 estima-

tion steps), the chart shows that the number of tracks was

higher using the EKF. Instead, even in this case, the values

relative to UKF and SIR particle filters were very close.
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Fig. 9 Human tracking in Office 1.

Fig. 10 Human tracking in the laboratory.

Fig. 12 Total amount of tracks generated during the experiments.

6.3 Computational Efficiency

It is known that, in general, particle filters are computation-

ally much more demanding than Kalman filters, and that the

time needed for the estimation increases with the number

of samples used. For many applications, this does not rep-

resent a problem, because the number of actual estimations

is limited (e.g. single target tracking) or simply because the

hardware is powerful enough. It might pose a serious con-

straint, however, in case of frequent estimations and limited

computing resources, e.g. for the system currently studied.

In this experiment, the execution time needed by each

filter to perform an estimation (i.e. single iteration of the

process in Fig. 3) was compared while tracking one or more

persons. For simplicity, only legs detections were used to up-

date the track estimates. The detections have been simulated

with static laser data hard-coded in the software, generating

from one to four pairs of legs observable at the same time.

This permitted to have the same inputs constantly available

to the tracking system for all the estimators under compari-

son.

The graph in Fig. 13 shows the average times needed

for an update iteration run on the Pioneer robot, which in-

cludes only the prediction and one filter update, i.e. the first

two blocks in the diagram of Fig. 3. The time spent for legs

detection and additional routines (tracks handling, data as-

sociation, logging, etc.) has not been counted. The results

have been obtained averaging the total estimation time on

100 consecutive time steps, tracking up to 4 target simulta-

neously. The estimation processing used approximately 70%

of the CPU and, as expected, had different time durations,

depending on the filter adopted for tracking. The graph shows

that the time increased almost linearly with the number of

tracked persons and, for the SIR filter, with the number of

particles.

It is important to note that, while the EKF and UKF so-

lutions were very fast, the ones based on particle filters were

much slower and, in some case, their tracking performance
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Fig. 13 Estimation time, in logarithmic scale, as function of the num-

ber of persons being tracked. The laser scans period (200ms) is shown

for reference.

was drastically limited. For example, during the tracking of

three or more people, the execution time of the SIR with

500 particles was close to 200ms (i.e. the period of a laser

scan). Since normally there are other tasks to be executed

in addition to the estimation, the SIR tracking system can-

not process the sensor information as fast as it should and,

very often, it is not able to work properly. Indeed, in this ex-

periment, the measurement of the execution time was possi-

ble only because the targets were static, otherwise the SIR-

based tracking would have failed because of the low update

frequency (i.e. it could not work in real-time). Same consid-

erations can be done for the SIR with 1000 particles, or con-

sidering a larger number of people. Although other particle

filters computationally more efficient (Schulz et al. 2003b;

Kwok et al. 2004) should be considered in future compar-

isons, the UKF remains generally a faster solution.

7 Conclusions and Future Work

This paper presented an experimental comparison of peo-

ple tracking systems based on three different Bayesian es-

timators, namely EKF, UKF and SIR particle filter. These

solution makes use of probabilistic sensor fusion techniques

to integrate laser and visual data. Their implementation on

a mobile robot have been described in detail. With several

experiments in real situations, the systems have been com-

pared in terms of accuracy, robustness and computational

efficiency.

On the specific task of real-time people tracking with

mobile robots, the results showed that a UKF solution could

perform as good as particle filters. Furthermore, analyzing

the estimation time, the UKF proved to be a better choice

for the current application, in particular when hardware re-

sources are limited. An approach based on this filter could

be generally preferred for autonomous robots with low pro-

cessing power, for which the computational efficiency is a

key issue.

In the future, it would be interesting to extend this com-

parison to include more recent and efficient particle filters,

possibly using different mobile platforms as well. Their per-

formance could also be evaluated using different data asso-

ciation algorithms to see how these influence people track-

ing. The results of this research are also important for the

authors’ implementation of an interactive robot performing

simultaneous people tracking and recognition, for which an

accurate and robust real-time estimation is a fundamental

requirement.
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